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Overview 

• New SAMMY Resolution Functions for RPI neutron detectors 
1.  Lithium glass neutron detector array 
2.  Liquid scintillator proton recoil neutron detector 

• SAMMY Modernization  Plan 
• S(a,b) project update 
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Total SAMMY Resolution Function 
• Convolution of four components:  

1.  Burst width 
2.  Neutron Sources:  

•  Tantalum Target 
•  Water Moderator 

3.  time-of-flight channel width,  
4.  Neutron Detector:  

•  Lithium Glass Neutron Detector 
•  Liquid Scintillator Proton Recoil EJ-302 
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6Li Glass Detector Array MELINDA 
• MCNP simulated the detector and the time distribution                   

of neutrons, tallying 6Li (n,α) reactions 

•  [1] R. Bahran et al. “A New High Energy Resolution Neutron Transmission Detector System at the 
Gaerttner LINAC Laboratory” Proceedings of The Tenth International Topical Meeting on Nuclear 
Applications and Utilization of Accelerators AccApp’11, Knoxville, TN, 2011. 

•  [2] A. Youmans et. al. “Using Simulations To Determine The Energy Resolution Function Of Neutron Time-
Of-Flight Experiments” Proceedings of the 2013 Annual ANS Meeting, Washington, D.C, 2013 
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•  From MCNP simulation the RPI resolution function was 
implemented by making parameters of the SAMMY ORR, d and f, 
energy-dependent:  

6Li Glass Detector Array MELINDA cont’d. 
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Caveat:  d0, d1, d2, f0, f1, f2, 
should not be fitted because 
constant values for d and f have 
been hardwired into SAMMY 
resolution function. 
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Results: Li-glass detector 
• Sample comparison on RPI Mo-95 transmission data 

–  E-dependent vs. constant d and f 
–  We choose three constant values of d and f for comparison 
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Results: Li-glass resolution function  
• E-dependent Li-glass detector resolution function reduces χ2  

Trial Chi-Squared 
divided by N 

d(E) and f(E) 1.38422 
d, f constant, E=1 keV 1.67559 
d, f const. E=12.5 keV 1.42627 
d, f const. E=100 keV 1.55281 
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EJ-301 Liquid Scintillator 
•  (MCNP) was used to simulate the detector and the time distribution 

of neutrons as they react with the detector material, tallying elastic 
scattering with hydrogen in the proton recoil detector.  

• Six modules shown below,  each contains liquid CH1.212. Neutrons 
scatter off of hydrogen, ejecting a proton.  The proton deposits its 
energy through charged particle interactions into the scintillation 
material à pulse 

Expansion
Volume

Photomultiplier
Tube

Inner Cavity
17.78 cm x 35.05 cm

x 12.7 cm deep

Photomultiplier
Base

18.29 cm

13.82 cm

35.56 cm

[3] M. Rapp, “Design and construction of a large area detector system and neutron 
total cross section measurements in the energy range 0.4 to 20 MeV,” Ph.D. 
dissertation, Mech. Aero. Nucl. Eng. Dept., RPI, Troy, NY, 2011 
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EJ-301 Liquid  
Scintillator cont.’d 

E [MeV] 

Multiple scattering  
yields tapering below: 
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Results: 
Liq. Scintil. 
(EJ-301) 

• EJ-301 resolution  
   func. reduces χ2 

(everything else being the same)  

Chi squared divided by N 
Resolution 
Function 

Thin Fe56 
Sample 

Medium 
Fe56 

Thick 
Fe56 

Gauss.+Exp. 13.65 21.42 5.89 
Ne-110 12.74 17.31 4.97 
EJ-301 6.41 8.26 2.77 
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SAMMY Modernization Plan 
• Use Libraries to simplify programming and parallelization: 

–  BLAS, LAPACK, Trillinos (?)  
•  Abstractions: e.g. Armadillo library to write matrix product as A*B; good for R-matrix 

–  Complex numbers, derivatives, etc. 

•  Implement in C++ (most likely) 
–  ORNL SCALE development, build, Q&A framework 

• Now is the time to think about connecting to URR, HE, IBEs, etc. 
–  Synergies with AMPX 

• Separate Bayesian fitting modules from R-matrix computations 
–  A generic Bayesian fitting module could also be used for S(a,b) evaluations 

•  Feedback from community more than welcome 
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S(a,b) methods update 
• S(a,b) evaluations via MD appear possible 

–  Perform MD simulation 
–  For liquids: 

•  Compute Intermediate structure function (simpler than dyn. struct. funct.) 
•  From it, compute dynamical structure function S(k,w)  

–  For solids: one could use LAMMPS/PHANA to get phonon spectrum 
–  ORNL Spallation Neutron Source data: S(k,w) and its covariance  

•  compare and iterate, GLLS will yield interaction parameters and their covariance  
–  Compute sensitivities from an adjoint MD simul, not numerical variations 

• Applied for and received NERSC Startup Allocation: only 50K but: 
–  All MD and DFT codes (including ab initio ones) available at NERSC  
–  Will enable a prototype evaluation that could lead to other applications 

• Promising collaborations here and with ORNL’s MD experts 
–  Will apply for ORNL’s OLCF Director’s Discretionary supercomp. alloc. 

Third-party  
codes failing  
for water MD 

This 
works 
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Additional slides 
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Overview 
• Goal: Develop methods for generating covariance data of S(a,b) 

–  In anticipation of the RPI data for H20 and Si02 (Si), polyethylene; SNS 

• General approach: 
1.  Define model T as a function of some parameters P 
2.  Fit model T to data to obtain covariance matrix M of parameters P 
3.  Construct covariance of S(a,b) from M  as C = S M S  

•  Where                                is the sensitivity matrix of model T 

• Various models T being considered: 
–  Addressing various levels of physical models 

•  Various approximations: from DFT to MD to free gas, 
•   Some assumptions revisited (e.g. form of the scattering w.f.)   

–  Ab intio models more computationally intensive 

• MADNESS Computational framework (R&D 100, SciDAC) 
–  May provide novel computational approaches and insights 

S = ∂T (P) / ∂P
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General consideration 
•  The form of the scattering function assumed 

–  Plane wave + scattered wave 
–  Can we estimate the magnitude of ensuing error?  (assumed to be small) 

•  The low-energy (< 5 eV) neutron-nucleus scattering determined 
by the scattering length  

•  First-order Born approximation  
–  Does not require a delta-function interaction;  

•  Woods-Saxon is more realistic 
•  But delta-function is likely a good approximation since size(nuclei) << size(atoms) 

•  This leads to expressions for S(k,w) or S(a,b) in terms of pair-
wise correlation functions 
–  Delineates neutron-scattering from material properties PCF 
– àPCF could be computed by e.g. MD 

• What is an efficient path to S(a,b) covariance? 
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0. Single molecule scattering  

•  The motion of hydrogen atoms in water in terms of the H20  
molecule as the basic dynamical unit. 
–  Mark Nelkin, Phys. Rev. 119, 741 (1960) 

• We could fit parameters of the S(a,b) expression to data 
–  Parameters of water vibrations, torsional oscillations, etc. 
–  From covariance/correlation of fitted parameters get covariance of S(a,b) 

• We could also fit neutron-nucleus potential parameters 
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1. Molecular Dynamics (MD) 
• MD Method: 

–  assumes a parameterized interaction potential (e.g. Lennard-Jones) 
–  Uses Newton’s equation to evolve the many-body system 
–  Then computes PCFs to get S(a,b) and structure factors 
–  Faster but less accurate than more ab initio methods like DFT  
–  Interaction parameters fitted to (usually) structure factors S(k) 
–  The S(k) is the 0-th moment of S(q,w) 
–  But parameter uncertainty or covariance is generally not provided 

• Several established MD codes available 
–  GROMACS, LAMMPS, NAMD  
–  http://en.wikipedia.org/wiki/List_of_software_for_molecular_mechanics_modeling 

–  Output molecular/atomic trajectories in time 
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1. Molecular Dynamics (MD) cont’d. 
•  Trajectories processed to compute G(r,t), I(k,t), S(k,w) 

–  Using dynsf: can take days to complete, prone to crashing 

• Multi-atomic molecules like H20 require computations S(k,w) for all 
possible different pairs: 
–  O-O, H-H, O-H 
–  The total S(k,w) is the weighted average of the the partial S(k,w) 

•  Weights are: ( scattering lengths ) * ( elemental fractions ) 

• Currently computing pairwise S(k,w) using dynsf 
–  may need to develop a faster version 
–  Cf. LAMMPS MD simulation takes a couple of hours on 32 processors   

• Computed polyethylene, and SiO2 phonon spectrum using LAMMPS 
–  Also PE phonon spectrum has been extracted from SEQUOIA data 
–  Data fitting and covariances are on the horizon  
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Gromacs Example Run Water   
• O-O radial distribution function g(r) 

–  Classical pair correlation function G(r,t) would give S(k,w) 
–  https://github.com/cfinch/GROMACS_Examples/tree/master/water 
–  Must use third party code e.g. dynsf to compute G(r,t) from the trajectories  074506-10 Skinner et al. J. Chem. Phys. 138, 074506 (2013)

(a) (b)

FIG. 9. Uncertainty in gOO(r) using the APS dataset and Eq. (14) to esti-
mate the statistical error. (a) gOO(r) and (b)rDOO(r) = 4πρr2[gOO(r) − 1]
(ρ = 0.03338 Å−3), which emphasizes the oscillations at large r. A Qmax
= 23 Å−1 was used in the Fourier transform.

gOO(r) patterns in the literature. The four datasets reviewed in
the present paper were chosen since these experiments were
designed to minimize these sources of systematic error over a
wide Q-range. A consistent treatment was achieved by analyz-
ing the four IX(Q) datasets using the same procedures detailed
in Sec. II, and using the same variable Lorch function in the
Fourier transform detailed in Sec. IV. The only differences
between the data analyses were the Qmax value set by each
individual dataset and the effective Q-step of each dataset as
shown in Figure 2.

In general, errors in an S(Q) measurement may be addi-
tive or multiplicative. Additive errors which are slowly vary-
ing in Q, only affect the low-r region of the correspond-
ing g(r), to a very good level of approximation. In the case
of obtaining the gOO(r) for water, most of the largest error
sources, such as imperfect intramolecular, Compton, and self-
scattering subtractions fall into this category, and hence do not
significantly affect gOO(r) at r > 2.4 Å.

Multiplicative errors to a measured S(Q), however, are
much more serious. Q-dependent multiplicative errors to S(Q)
are particularly hard to track since the multiplication becomes
a convolution with the “true” g(r) after Fourier transforma-
tion, and should be minimized as much as possible. Care has
been taken to avoid such multiplicative errors in the design
and analysis of these measurements, for example by checking
the low-Q (compressibility) and high-Q (Compton scattering)
limits of the measured differential cross sections. Given these
consistency checks the multiplicative errors are expected to
be less than 2% in gOO(r) at all r > 2.4 Å.

The resulting gOO(r) functions are compared in
Figure 10. We find slowly varying differences in SOO(Q)
in the range 2 < Q < 10 Å−1 between the datasets (see
Figure 2(c)). These slowly varying differences result in vari-
ation between the measured gOO(r) functions at distances be-
low 2.4 Å. At the larger (r > 2.4 Å) intermolecular distances,
the APS, SPring-8 and SSRL1 datasets are in agreement. The
SSRL2 gOO(r), however, exhibits a significantly reduced peak
height g1 and a larger r1 position for the first O-O correlation
peak compared to the other datasets. This broadened 1st peak
is consistent with truncation effects due to the smaller Qmax
∼13 Å−1 as shown for the APS data in Figures 4(c) and 4(d).
The averaged gOO(r) for the other 3 datasets (APS, SPring-8,

FIG. 10. Comparison of the gOO(r) derived from the four x-ray datasets
shown in Figure 2. The APS data (light blue line), the SPring-8 data (black
dashed line), SSRL1 data (black line), and SSRL2 data (red dotted line) were
analyzed in the same way, and their resulting gOO(r) are very similar. The
1st O-O peak is broader and blunter in the SSRL2 dataset, compared to the
others. This is expected to be due to the limited useful Qmax ∼ 13 Å−1 of
the SSRL2 measurement. This plot was produced using Qmax values of 23,
18, 15.5, and 13 Å−1 in the Fourier transforms of the APS, Spring-8, SSRL1,
and SSRL2 datasets, respectively. For clarity, the gOO(r) functions are shifted
vertically by 0.5 from each other.

and SSRL1) is shown in Figures 11(a) and 11(b) with the stan-
dard deviations amongst them at each Q-point illustrated by
the shaded areas.

We note that some slight non-zero intensity is observed,
in the APS data at r = 2.4 Å, with an intensity around 0.05–
0.1 in gOO(r) (see Figures 8 and 10). A similar non-zero
intensity is also seen in this r-region by Hura et al.11 This in-
tensity varied only slightly with the different SOH(Q) subtrac-
tions, and is not explained by the gHH(r) contribution which is
much smaller (see Sec. V). This may not be due to actual O-O
correlations, but is most likely caused by some slight remain-
ing error in the O-H weighting and/or Compton scattering in
the Q < 10Å−1 region. This problem is expected to be much
smaller at higher r, since higher-r corresponds to higher fre-
quencies in Q, which are less subject to error. The small non-
zero intensity around 2 < r < 2.4 Å is also not expected to be

(a) (b)

FIG. 11. gOO(r) or rDOO(r) functions with uncertainty derived from the
SSRL1, SPring-8, and APS x-ray experiments (black lines and blue shaded
areas).

Downloaded 31 Jul 2013 to 128.219.49.13. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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2. Density Functional Theory 
• Codes: 

–  VASP, QuantumEspresso, BigDFT, MADNESS (more later) 
–  http://en.wikipedia.org/wiki/

List_of_quantum_chemistry_and_solid_state_physics_software 

• Water is still not fully understood 
–  Discrepancies between data an theory persist 

•  structure factor, pairwise correlation function 
–  Several recent Ph.D. thesis on water (active field) 

•  ~1,000’s of atoms/molecules 
• More accurate than MD 
• DFT computations are used to fit MD interaction parameters 
• A candidate framework for S(a,b) covariances 
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3. Total Montel Carlo 

• By Koning and Rochman 
• Could compute covariance of existing S(a,b) evaluations 

–  For which covaraiance data does not exist 
–  This method yields covariance by averaging large random 

ensembles 

• Could be compared to new evaluations 
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4. SNS SEQUOIA Data reduction 
Horace platform: 
• One of the two preferred methods for data reduction and analysis  

–  at the SNS SEQUOIA 
–  double diff. (angle, energy) cross section is reduced to S(q,ω) 
–  Built-in function for parameter fitting to reduced data S(q,ω) 

•  Returns model parameters, their uncertainties, and the correlation matrix 
•  One can compute the model covariance matrix of the S(q,ω) 

• An established platform  
–  Works with MATLAB out of the box 
–  Used in multitude of advanced papers  
–  Downloadable from http://horace.isis.rl.ac.uk 

Also DAVE: http://www.ncnr.nist.gov/dave/   
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Double-Differential Cross Section 
• Ouisloumen and Sanchez (1991) cf. Rothenstein/Dagan/Becker 

Covariance Matrix of a Double-Differential Doppler-Broadened Elastic

Scattering Cross Section

G. Arbanas1,a, B. Becker2, R. Dagan3, M.E. Dunn1, N.M. Larson1, L.C. Leal1, and M.L. Williams1

1 Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6171, USA
2 Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, NES Bldg. 1-9, 3021

Tibbits Ave., Troy, NY 12180, USA
3 Institut für Neutronenphysik und Reaktortechnik, Forschungszentrum Karlsruhe Gmbh, Postfach 3640, 76021 Karlsruhe,

Germany

Abstract. Legendre moments of a double-di↵erential Doppler-broadened elastic neutron scattering cross sec-
tion on 238U are computed near the 6.67 eV resonance at temperature T = 103 K up to angular order 14. A
covariance matrix of these Legendre moments is computed as a functional of the covariance matrix of elastic
scattering cross section. A variance of double-di↵erential Doppler-broadened elastic scattering cross section is
computed from the covariance of Legendre moments.

1 Introduction

A general expression for temperature-dependent Legendre
moments of a double-di↵erential Doppler-broadened elas-
tic scattering cross section was derived by Ouisloumen and
Sanchez in [1]. However, its practical applications were
limited to computations of the zeroth-order Legendre mo-
ment because higher order Legendre moments entail a time-
consuming computation of a triple-nested integral. A re-
cursive algorithm that transforms this triple-nested inte-
gral into a single integral via iterative application of the
integration-by-parts method was designed and implemented
in [2]. This algorithm enables accurate computation of Leg-
endre moments of an arbitrary order in a way that bypasses
the tedious programming of their explicit analytical ex-
pressions. We use this algorithm to compute the first fifteen
Legendre moments and their covariance matrix.

We comment on convergence of a Legendre expan-
sion of Doppler-broadened double-di↵erential elastic neu-
tron scattering cross section near a low energy resonance
of 238U. A complementary stochastic treatment of ther-
mal e↵ects in [3] and [4] was used to validate a double-
di↵erential cross section computed via Legendre moment
expansion. We also compute a covariance matrix of Legen-
dre moments and use it to compute a variance of a double-
di↵erential Doppler-broadened elastic scattering cross sec-
tion. In Sect. 2 essential formulae are listed, and in Sect. 3
numerical results are presented.

a e-mail: arbanasg@ornl.gov
Notice: This manuscript has been authored by UT-Battelle, LLC,
under contract DE-AC05-00OR22725 with the U.S. Department
of Energy. The United States Government retains and the pub-
lisher, by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the pub-
lished form of this manuscript, or allow others to do so, for United
States Government purposes.

2 Formalism

A double-di↵erential elastic scattering cross section in the
laboratory frame at temperature T can be expanded in Leg-
endre polynomials as

�T
s (E ! E0, µlab) =

X

n�0

(n + 1
2 )�T

sn(E ! E0)Pn(µlab) (1)

where µlab ⌘ cos \(v, v0), v and v

0 are the initial and the
final velocity corresponding to the initial and the final en-
ergy E and E0 in the laboratory frame, respectively, and
Pn(µlab) are the Legendre polynomials. It is noted that the
angular distribution in the lab frame, Eq. (1), is anisotropic
for n � 1 even when it is isotropic in the center-of-mass
frame.

Low-energy elastic neutron scattering in the center-of-
mass frame can to a high accuracy be approximated by
isotropic s-wave scattering. An expression for the nth-order
Legendre moment (in the lab frame) of an isotropic angu-
lar distribution in the center-of-mass frame taken from [1]
is:

�T
sn(E ! E0) =

�5/2

4E
eE/kT
Z 1

0
t�tab

s (E00(t))e�t2/A n(t)dt,

(2)
where E and E0 are the incident and outgoing neutron en-
ergies in the laboratory frame, T is the temperature in de-
grees Kelvin, k is the Boltzmann constant, � ⌘ (A + 1)/A,
A is the target mass in units of neutron mass m, E00(t) ⌘
�kT t2/A is an energy in the lab frame, and �tab

s (Elab) is
a tabulated elastic scattering cross section1 at zero degrees
Kelvin. The  n(t) is computed via Eqs. (13-26) of [2], where
 n(t) is the  n0(t) in a generalized notation introduced in
[2]. The integration variable t is related to the neutron ve-
locity u in the center-of-mass frame as t = u

p
(A + 1)m/(2kT ).

1 Usually given as a function of energy in the lab frame.
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2 Formalism
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Pn(µlab) are the Legendre polynomials. It is noted that the
angular distribution in the lab frame, Eq. (1), is anisotropic
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mass frame can to a high accuracy be approximated by
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where E and E0 are the incident and outgoing neutron en-
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grees Kelvin, k is the Boltzmann constant, � ⌘ (A + 1)/A,
A is the target mass in units of neutron mass m, E00(t) ⌘
�kT t2/A is an energy in the lab frame, and �tab

s (Elab) is
a tabulated elastic scattering cross section1 at zero degrees
Kelvin. The  n(t) is computed via Eqs. (13-26) of [2], where
 n(t) is the  n0(t) in a generalized notation introduced in
[2]. The integration variable t is related to the neutron ve-
locity u in the center-of-mass frame as t = u

p
(A + 1)m/(2kT ).

1 Usually given as a function of energy in the lab frame.

• Arbanas et al. M&C 2011, NCSC2 2012, PHYSOR 2012   

EPJ Web of Conferences

Legendre moments in Eq. (2) can be written compactly
as functionals of �tab

s :

�T
sn(E ! E0) = ÔT

n (E ! E0)[�tab
s ], (3)

where the operator ÔT
n (E ! E0) is defined by equivalence

of Eq. (2) and Eq. (3). The temperature, the incoming and
the outgoing energy can be combined into a vector variable
x ⌘ (T, E, E0), so that Eq. (3) becomes

�sn(x) = Ôn(x)[�tab
s ]. (4)

A covariance matrix of Legendre moments is then

Mnn0 (x, y) ⌘ h��sn(x)��sn0 (y)i = Ôn(x)Ôn0 (y)[Vs] (5)

where
Vs(E, E0) ⌘ h��tab

s (E)��tab
s (E0)i (6)

is a covariance matrix of a zero-temperature elastic scatter-
ing cross section2. A double nested integral implicit in Eq.
(5) is symmetric because the covariance matrix V in the
integrand is symmetric. Combining Eqs. (1) and (5) yields
a covariance matrix of a double-di↵erential cross section:

h��s(x, µlab)��s(y, µ0lab)i =
X

n,n0
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We set y = x to compute a covariance matrix of Legen-
dre moments, Mnn0 (x, x), and then we set µ0lab = µlab to
compute a variance of double-di↵erential elastic scattering
cross section, h(��s(x, µlab))2i. Assuming that T , E, and E0
are known precisely, then the covariance matrix of Leg-
endre moments in Eq. (5) and a covariance matrix of a
double-di↵erential scattering in Eq. (7) are completely de-
termined by the elastic scattering covariance matrix V(E, E0).

3 Results

Computations were performed for incoming neutron en-
ergies just below and just above the 238U 6.67 eV reso-
nance, namely for E = 6.5 and 6.8 eV, and for temperature
T = 103 K. The 238U elastic neutron scattering cross sec-
tion �tab

s (E) at 0 K used in Eq. (2) is based on ENDF/B-VII
Release 0 and is plotted in Figure 1. The fifteen Legen-
dre moments computed via Eq. (2) are plotted in Figures 2
and 3 for incoming energies E = 6.5 eV and E = 6.8 eV,
respectively. A covariance matrix Vs(E, E0) of 238U total
elastic neutron scattering cross section at T = 0 K that was
used to compute the covariance in Eq. (5) is plotted in Fig-
ure 4. The peak in the covariance matrix corresponds to the
6.67 eV resonance.

For an incoming energy E = 6.5 eV that is just below
the resonance energy, the thermal motion of 238U causes
the average outgoing neutron energy to be greater than
the incoming energy (“up-scattering”), hE0i = 6.60 eV is
greater than E = 6.5 eV, as can be seen in Figure 5. For an
incoming energy E = 6.8 eV, which is just above the res-
onance energy, the e↵ect is in reverse (“down-scattering”),
hE0i = 6.67 eV is less than E = 6.8 eV, as can be seen in
Figure 7.

2 Energies E and E0 in V(E, E0) are generic variable names.
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scattering probability is dominating. �T

s (E) = 103.4 b.
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n (E ! E0) is defined by equivalence
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are known precisely, then the covariance matrix of Leg-
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double-di↵erential scattering in Eq. (7) are completely de-
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3 Results
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ergies just below and just above the 238U 6.67 eV reso-
nance, namely for E = 6.5 and 6.8 eV, and for temperature
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s (E) at 0 K used in Eq. (2) is based on ENDF/B-VII
Release 0 and is plotted in Figure 1. The fifteen Legen-
dre moments computed via Eq. (2) are plotted in Figures 2
and 3 for incoming energies E = 6.5 eV and E = 6.8 eV,
respectively. A covariance matrix Vs(E, E0) of 238U total
elastic neutron scattering cross section at T = 0 K that was
used to compute the covariance in Eq. (5) is plotted in Fig-
ure 4. The peak in the covariance matrix corresponds to the
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For an incoming energy E = 6.5 eV that is just below
the resonance energy, the thermal motion of 238U causes
the average outgoing neutron energy to be greater than
the incoming energy (“up-scattering”), hE0i = 6.60 eV is
greater than E = 6.5 eV, as can be seen in Figure 5. For an
incoming energy E = 6.8 eV, which is just above the res-
onance energy, the e↵ect is in reverse (“down-scattering”),
hE0i = 6.67 eV is less than E = 6.8 eV, as can be seen in
Figure 7.
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s ], (3)

where the operator ÔT
n (E ! E0) is defined by equivalence

of Eq. (2) and Eq. (3). The temperature, the incoming and
the outgoing energy can be combined into a vector variable
x ⌘ (T, E, E0), so that Eq. (3) becomes

�sn(x) = Ôn(x)[�tab
s ]. (4)

A covariance matrix of Legendre moments is then

Mnn0 (x, y) ⌘ h��sn(x)��sn0 (y)i = Ôn(x)Ôn0 (y)[Vs] (5)

where
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s (E0)i (6)

is a covariance matrix of a zero-temperature elastic scatter-
ing cross section2. A double nested integral implicit in Eq.
(5) is symmetric because the covariance matrix V in the
integrand is symmetric. Combining Eqs. (1) and (5) yields
a covariance matrix of a double-di↵erential cross section:
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We set y = x to compute a covariance matrix of Legen-
dre moments, Mnn0 (x, x), and then we set µ0lab = µlab to
compute a variance of double-di↵erential elastic scattering
cross section, h(��s(x, µlab))2i. Assuming that T , E, and E0
are known precisely, then the covariance matrix of Leg-
endre moments in Eq. (5) and a covariance matrix of a
double-di↵erential scattering in Eq. (7) are completely de-
termined by the elastic scattering covariance matrix V(E, E0).

3 Results

Computations were performed for incoming neutron en-
ergies just below and just above the 238U 6.67 eV reso-
nance, namely for E = 6.5 and 6.8 eV, and for temperature
T = 103 K. The 238U elastic neutron scattering cross sec-
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s (E) at 0 K used in Eq. (2) is based on ENDF/B-VII
Release 0 and is plotted in Figure 1. The fifteen Legen-
dre moments computed via Eq. (2) are plotted in Figures 2
and 3 for incoming energies E = 6.5 eV and E = 6.8 eV,
respectively. A covariance matrix Vs(E, E0) of 238U total
elastic neutron scattering cross section at T = 0 K that was
used to compute the covariance in Eq. (5) is plotted in Fig-
ure 4. The peak in the covariance matrix corresponds to the
6.67 eV resonance.

For an incoming energy E = 6.5 eV that is just below
the resonance energy, the thermal motion of 238U causes
the average outgoing neutron energy to be greater than
the incoming energy (“up-scattering”), hE0i = 6.60 eV is
greater than E = 6.5 eV, as can be seen in Figure 5. For an
incoming energy E = 6.8 eV, which is just above the res-
onance energy, the e↵ect is in reverse (“down-scattering”),
hE0i = 6.67 eV is less than E = 6.8 eV, as can be seen in
Figure 7.

2 Energies E and E0 in V(E, E0) are generic variable names.
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sn(E ! E0) = ÔT

n (E ! E0)[�tab
s ], (3)

where the operator ÔT
n (E ! E0) is defined by equivalence

of Eq. (2) and Eq. (3). The temperature, the incoming and
the outgoing energy can be combined into a vector variable
x ⌘ (T, E, E0), so that Eq. (3) becomes

�sn(x) = Ôn(x)[�tab
s ]. (4)

A covariance matrix of Legendre moments is then

Mnn0 (x, y) ⌘ h��sn(x)��sn0 (y)i = Ôn(x)Ôn0 (y)[Vs] (5)

where
Vs(E, E0) ⌘ h��tab

s (E)��tab
s (E0)i (6)

is a covariance matrix of a zero-temperature elastic scatter-
ing cross section2. A double nested integral implicit in Eq.
(5) is symmetric because the covariance matrix V in the
integrand is symmetric. Combining Eqs. (1) and (5) yields
a covariance matrix of a double-di↵erential cross section:
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We set y = x to compute a covariance matrix of Legen-
dre moments, Mnn0 (x, x), and then we set µ0lab = µlab to
compute a variance of double-di↵erential elastic scattering
cross section, h(��s(x, µlab))2i. Assuming that T , E, and E0
are known precisely, then the covariance matrix of Leg-
endre moments in Eq. (5) and a covariance matrix of a
double-di↵erential scattering in Eq. (7) are completely de-
termined by the elastic scattering covariance matrix V(E, E0).

3 Results

Computations were performed for incoming neutron en-
ergies just below and just above the 238U 6.67 eV reso-
nance, namely for E = 6.5 and 6.8 eV, and for temperature
T = 103 K. The 238U elastic neutron scattering cross sec-
tion �tab

s (E) at 0 K used in Eq. (2) is based on ENDF/B-VII
Release 0 and is plotted in Figure 1. The fifteen Legen-
dre moments computed via Eq. (2) are plotted in Figures 2
and 3 for incoming energies E = 6.5 eV and E = 6.8 eV,
respectively. A covariance matrix Vs(E, E0) of 238U total
elastic neutron scattering cross section at T = 0 K that was
used to compute the covariance in Eq. (5) is plotted in Fig-
ure 4. The peak in the covariance matrix corresponds to the
6.67 eV resonance.

For an incoming energy E = 6.5 eV that is just below
the resonance energy, the thermal motion of 238U causes
the average outgoing neutron energy to be greater than
the incoming energy (“up-scattering”), hE0i = 6.60 eV is
greater than E = 6.5 eV, as can be seen in Figure 5. For an
incoming energy E = 6.8 eV, which is just above the res-
onance energy, the e↵ect is in reverse (“down-scattering”),
hE0i = 6.67 eV is less than E = 6.8 eV, as can be seen in
Figure 7.

2 Energies E and E0 in V(E, E0) are generic variable names.
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of Eq. (2) and Eq. (3). The temperature, the incoming and
the outgoing energy can be combined into a vector variable
x ⌘ (T, E, E0), so that Eq. (3) becomes
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s ]. (4)

A covariance matrix of Legendre moments is then
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where
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is a covariance matrix of a zero-temperature elastic scatter-
ing cross section2. A double nested integral implicit in Eq.
(5) is symmetric because the covariance matrix V in the
integrand is symmetric. Combining Eqs. (1) and (5) yields
a covariance matrix of a double-di↵erential cross section:
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We set y = x to compute a covariance matrix of Legen-
dre moments, Mnn0 (x, x), and then we set µ0lab = µlab to
compute a variance of double-di↵erential elastic scattering
cross section, h(��s(x, µlab))2i. Assuming that T , E, and E0
are known precisely, then the covariance matrix of Leg-
endre moments in Eq. (5) and a covariance matrix of a
double-di↵erential scattering in Eq. (7) are completely de-
termined by the elastic scattering covariance matrix V(E, E0).

3 Results
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ergies just below and just above the 238U 6.67 eV reso-
nance, namely for E = 6.5 and 6.8 eV, and for temperature
T = 103 K. The 238U elastic neutron scattering cross sec-
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s (E) at 0 K used in Eq. (2) is based on ENDF/B-VII
Release 0 and is plotted in Figure 1. The fifteen Legen-
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and 3 for incoming energies E = 6.5 eV and E = 6.8 eV,
respectively. A covariance matrix Vs(E, E0) of 238U total
elastic neutron scattering cross section at T = 0 K that was
used to compute the covariance in Eq. (5) is plotted in Fig-
ure 4. The peak in the covariance matrix corresponds to the
6.67 eV resonance.

For an incoming energy E = 6.5 eV that is just below
the resonance energy, the thermal motion of 238U causes
the average outgoing neutron energy to be greater than
the incoming energy (“up-scattering”), hE0i = 6.60 eV is
greater than E = 6.5 eV, as can be seen in Figure 5. For an
incoming energy E = 6.8 eV, which is just above the res-
onance energy, the e↵ect is in reverse (“down-scattering”),
hE0i = 6.67 eV is less than E = 6.8 eV, as can be seen in
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2 Energies E and E0 in V(E, E0) are generic variable names.

!"#$%&'

!"#$%!'

!"#(%%'

!"#(%!'

!"#(%&'

!"#(%)'

*"%' *"&' *"+' *"*' *",' -"%' -"&' -"+'

!
!"
#$%

&#

'"(%#$!)&#

*+,-#.!/0123#'"(456#76(8!193:#;1244#7!6523#

Fig. 1.

238U total elastic neutron scattering cross section �tab
s (E)

at 0 K based on ENDF/B-VII Release 0 was used in Eq. (2).

!"#$

!%#$

!&#$

#$

&#$

%#$

"#$

'#$

(#$

)#$

)*&$ )*%$ )*"$ )*'$ )*($ )*)$ )*+$ )*,$ )*-$ +$

!
!"
#$
%%&

$'
())
*+
,-
./
)

$')*-./)

0-12)345-"6!)47)$892):;962))
$<=2>)-.)?<@AAA)B)C%DEF)

#./$
&0.$
%12$
"32$
'./$
(./$
)./$
+./$
,./$
-./$
&#./$
&&./$
&%./$
&"./$
&'./$

Fig. 2. Legendre moments �T
n (E ! E0), n = 0, 1, . . . , 14 of 238U

elastic neutron scattering cross section at incoming energy E =
6.5 eV and temperature T = 103 K were computed via Eq. (2) and
used in Eq. (1) to produce a double-di↵erential elastic scattering
cross section in Figure 5. Legendre moments of a corresponding
scattering kernel are PT

sn(E ! E0) = �T
sn(E ! E0)/�T

s (E), where
�T

s (E) =
R 1

0 �
T
s0(E ! E0) dE0 = 14.3 b.
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Fig. 3. As in Figure 2 but for incoming neutron energy E =
6.8 eV; since E is above the 6.67 eV resonance energy, down-
scattering probability is dominating. �T

s (E) = 103.4 b.
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Legendre moments in Eq. (2) can be written compactly
as functionals of �tab

s :

�T
sn(E ! E0) = ÔT

n (E ! E0)[�tab
s ], (3)

where the operator ÔT
n (E ! E0) is defined by equivalence

of Eq. (2) and Eq. (3). The temperature, the incoming and
the outgoing energy can be combined into a vector variable
x ⌘ (T, E, E0), so that Eq. (3) becomes

�sn(x) = Ôn(x)[�tab
s ]. (4)

A covariance matrix of Legendre moments is then

Mnn0 (x, y) ⌘ h��sn(x)��sn0 (y)i = Ôn(x)Ôn0 (y)[Vs] (5)

where
Vs(E, E0) ⌘ h��tab

s (E)��tab
s (E0)i (6)

is a covariance matrix of a zero-temperature elastic scatter-
ing cross section2. A double nested integral implicit in Eq.
(5) is symmetric because the covariance matrix V in the
integrand is symmetric. Combining Eqs. (1) and (5) yields
a covariance matrix of a double-di↵erential cross section:

h��s(x, µlab)��s(y, µ0lab)i =
X

n,n0
(n + 1

2 )(n0 + 1
2 )

⇥Pn(µlab)Pn0 (µ0lab)Mnn0 (x, y) (7)

We set y = x to compute a covariance matrix of Legen-
dre moments, Mnn0 (x, x), and then we set µ0lab = µlab to
compute a variance of double-di↵erential elastic scattering
cross section, h(��s(x, µlab))2i. Assuming that T , E, and E0
are known precisely, then the covariance matrix of Leg-
endre moments in Eq. (5) and a covariance matrix of a
double-di↵erential scattering in Eq. (7) are completely de-
termined by the elastic scattering covariance matrix V(E, E0).

3 Results

Computations were performed for incoming neutron en-
ergies just below and just above the 238U 6.67 eV reso-
nance, namely for E = 6.5 and 6.8 eV, and for temperature
T = 103 K. The 238U elastic neutron scattering cross sec-
tion �tab

s (E) at 0 K used in Eq. (2) is based on ENDF/B-VII
Release 0 and is plotted in Figure 1. The fifteen Legen-
dre moments computed via Eq. (2) are plotted in Figures 2
and 3 for incoming energies E = 6.5 eV and E = 6.8 eV,
respectively. A covariance matrix Vs(E, E0) of 238U total
elastic neutron scattering cross section at T = 0 K that was
used to compute the covariance in Eq. (5) is plotted in Fig-
ure 4. The peak in the covariance matrix corresponds to the
6.67 eV resonance.

For an incoming energy E = 6.5 eV that is just below
the resonance energy, the thermal motion of 238U causes
the average outgoing neutron energy to be greater than
the incoming energy (“up-scattering”), hE0i = 6.60 eV is
greater than E = 6.5 eV, as can be seen in Figure 5. For an
incoming energy E = 6.8 eV, which is just above the res-
onance energy, the e↵ect is in reverse (“down-scattering”),
hE0i = 6.67 eV is less than E = 6.8 eV, as can be seen in
Figure 7.

2 Energies E and E0 in V(E, E0) are generic variable names.
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6.5 eV and temperature T = 103 K were computed via Eq. (2) and
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cross section in Figure 5. Legendre moments of a corresponding
scattering kernel are PT
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s (E), where
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s (E) =
R 1
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6.8 eV; since E is above the 6.67 eV resonance energy, down-
scattering probability is dominating. �T
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•  The above could be used to connect to the thermal S(a,b)  
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Legendre moments in Eq. (2) can be written compactly
as functionals of �tab

s :

�T
sn(E ! E0) = ÔT

n (E ! E0)[�tab
s ], (3)

where the operator ÔT
n (E ! E0) is defined by equivalence

of Eq. (2) and Eq. (3). The temperature, the incoming and
the outgoing energy can be combined into a vector variable
x ⌘ (T, E, E0), so that Eq. (3) becomes

�sn(x) = Ôn(x)[�tab
s ]. (4)

A covariance matrix of Legendre moments is then

Mnn0 (x, y) ⌘ h��sn(x)��sn0 (y)i = Ôn(x)Ôn0 (y)[Vs] (5)

where
Vs(E, E0) ⌘ h��tab

s (E)��tab
s (E0)i (6)

is a covariance matrix of a zero-temperature elastic scatter-
ing cross section2. A double nested integral implicit in Eq.
(5) is symmetric because the covariance matrix V in the
integrand is symmetric. Combining Eqs. (1) and (5) yields
a covariance matrix of a double-di↵erential cross section:

h��s(x, µlab)��s(y, µ0lab)i =
X

n,n0
(n + 1

2 )(n0 + 1
2 )

⇥Pn(µlab)Pn0 (µ0lab)Mnn0 (x, y) (7)

We set y = x to compute a covariance matrix of Legen-
dre moments, Mnn0 (x, x), and then we set µ0lab = µlab to
compute a variance of double-di↵erential elastic scattering
cross section, h(��s(x, µlab))2i. Assuming that T , E, and E0
are known precisely, then the covariance matrix of Leg-
endre moments in Eq. (5) and a covariance matrix of a
double-di↵erential scattering in Eq. (7) are completely de-
termined by the elastic scattering covariance matrix V(E, E0).

3 Results

Computations were performed for incoming neutron en-
ergies just below and just above the 238U 6.67 eV reso-
nance, namely for E = 6.5 and 6.8 eV, and for temperature
T = 103 K. The 238U elastic neutron scattering cross sec-
tion �tab

s (E) at 0 K used in Eq. (2) is based on ENDF/B-VII
Release 0 and is plotted in Figure 1. The fifteen Legen-
dre moments computed via Eq. (2) are plotted in Figures 2
and 3 for incoming energies E = 6.5 eV and E = 6.8 eV,
respectively. A covariance matrix Vs(E, E0) of 238U total
elastic neutron scattering cross section at T = 0 K that was
used to compute the covariance in Eq. (5) is plotted in Fig-
ure 4. The peak in the covariance matrix corresponds to the
6.67 eV resonance.

For an incoming energy E = 6.5 eV that is just below
the resonance energy, the thermal motion of 238U causes
the average outgoing neutron energy to be greater than
the incoming energy (“up-scattering”), hE0i = 6.60 eV is
greater than E = 6.5 eV, as can be seen in Figure 5. For an
incoming energy E = 6.8 eV, which is just above the res-
onance energy, the e↵ect is in reverse (“down-scattering”),
hE0i = 6.67 eV is less than E = 6.8 eV, as can be seen in
Figure 7.

2 Energies E and E0 in V(E, E0) are generic variable names.
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elastic neutron scattering cross section at incoming energy E =
6.5 eV and temperature T = 103 K were computed via Eq. (2) and
used in Eq. (1) to produce a double-di↵erential elastic scattering
cross section in Figure 5. Legendre moments of a corresponding
scattering kernel are PT

sn(E ! E0) = �T
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s (E), where
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s (E) =
R 1
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Fig. 3. As in Figure 2 but for incoming neutron energy E =
6.8 eV; since E is above the 6.67 eV resonance energy, down-
scattering probability is dominating. �T

s (E) = 103.4 b.
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Legendre moments in Eq. (2) can be written compactly
as functionals of �tab

s :

�T
sn(E ! E0) = ÔT

n (E ! E0)[�tab
s ], (3)

where the operator ÔT
n (E ! E0) is defined by equivalence

of Eq. (2) and Eq. (3). The temperature, the incoming and
the outgoing energy can be combined into a vector variable
x ⌘ (T, E, E0), so that Eq. (3) becomes

�sn(x) = Ôn(x)[�tab
s ]. (4)

A covariance matrix of Legendre moments is then

Mnn0 (x, y) ⌘ h��sn(x)��sn0 (y)i = Ôn(x)Ôn0 (y)[Vs] (5)

where
Vs(E, E0) ⌘ h��tab

s (E)��tab
s (E0)i (6)

is a covariance matrix of a zero-temperature elastic scatter-
ing cross section2. A double nested integral implicit in Eq.
(5) is symmetric because the covariance matrix V in the
integrand is symmetric. Combining Eqs. (1) and (5) yields
a covariance matrix of a double-di↵erential cross section:

h��s(x, µlab)��s(y, µ0lab)i =
X

n,n0
(n + 1

2 )(n0 + 1
2 )

⇥Pn(µlab)Pn0 (µ0lab)Mnn0 (x, y) (7)

We set y = x to compute a covariance matrix of Legen-
dre moments, Mnn0 (x, x), and then we set µ0lab = µlab to
compute a variance of double-di↵erential elastic scattering
cross section, h(��s(x, µlab))2i. Assuming that T , E, and E0
are known precisely, then the covariance matrix of Leg-
endre moments in Eq. (5) and a covariance matrix of a
double-di↵erential scattering in Eq. (7) are completely de-
termined by the elastic scattering covariance matrix V(E, E0).

3 Results

Computations were performed for incoming neutron en-
ergies just below and just above the 238U 6.67 eV reso-
nance, namely for E = 6.5 and 6.8 eV, and for temperature
T = 103 K. The 238U elastic neutron scattering cross sec-
tion �tab

s (E) at 0 K used in Eq. (2) is based on ENDF/B-VII
Release 0 and is plotted in Figure 1. The fifteen Legen-
dre moments computed via Eq. (2) are plotted in Figures 2
and 3 for incoming energies E = 6.5 eV and E = 6.8 eV,
respectively. A covariance matrix Vs(E, E0) of 238U total
elastic neutron scattering cross section at T = 0 K that was
used to compute the covariance in Eq. (5) is plotted in Fig-
ure 4. The peak in the covariance matrix corresponds to the
6.67 eV resonance.

For an incoming energy E = 6.5 eV that is just below
the resonance energy, the thermal motion of 238U causes
the average outgoing neutron energy to be greater than
the incoming energy (“up-scattering”), hE0i = 6.60 eV is
greater than E = 6.5 eV, as can be seen in Figure 5. For an
incoming energy E = 6.8 eV, which is just above the res-
onance energy, the e↵ect is in reverse (“down-scattering”),
hE0i = 6.67 eV is less than E = 6.8 eV, as can be seen in
Figure 7.

2 Energies E and E0 in V(E, E0) are generic variable names.
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Fig. 3. As in Figure 2 but for incoming neutron energy E =
6.8 eV; since E is above the 6.67 eV resonance energy, down-
scattering probability is dominating. �T

s (E) = 103.4 b.
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Legendre moments in Eq. (2) can be written compactly
as functionals of �tab

s :
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sn(E ! E0) = ÔT

n (E ! E0)[�tab
s ], (3)

where the operator ÔT
n (E ! E0) is defined by equivalence

of Eq. (2) and Eq. (3). The temperature, the incoming and
the outgoing energy can be combined into a vector variable
x ⌘ (T, E, E0), so that Eq. (3) becomes

�sn(x) = Ôn(x)[�tab
s ]. (4)

A covariance matrix of Legendre moments is then

Mnn0 (x, y) ⌘ h��sn(x)��sn0 (y)i = Ôn(x)Ôn0 (y)[Vs] (5)

where
Vs(E, E0) ⌘ h��tab

s (E)��tab
s (E0)i (6)

is a covariance matrix of a zero-temperature elastic scatter-
ing cross section2. A double nested integral implicit in Eq.
(5) is symmetric because the covariance matrix V in the
integrand is symmetric. Combining Eqs. (1) and (5) yields
a covariance matrix of a double-di↵erential cross section:

h��s(x, µlab)��s(y, µ0lab)i =
X

n,n0
(n + 1

2 )(n0 + 1
2 )

⇥Pn(µlab)Pn0 (µ0lab)Mnn0 (x, y) (7)

We set y = x to compute a covariance matrix of Legen-
dre moments, Mnn0 (x, x), and then we set µ0lab = µlab to
compute a variance of double-di↵erential elastic scattering
cross section, h(��s(x, µlab))2i. Assuming that T , E, and E0
are known precisely, then the covariance matrix of Leg-
endre moments in Eq. (5) and a covariance matrix of a
double-di↵erential scattering in Eq. (7) are completely de-
termined by the elastic scattering covariance matrix V(E, E0).

3 Results

Computations were performed for incoming neutron en-
ergies just below and just above the 238U 6.67 eV reso-
nance, namely for E = 6.5 and 6.8 eV, and for temperature
T = 103 K. The 238U elastic neutron scattering cross sec-
tion �tab

s (E) at 0 K used in Eq. (2) is based on ENDF/B-VII
Release 0 and is plotted in Figure 1. The fifteen Legen-
dre moments computed via Eq. (2) are plotted in Figures 2
and 3 for incoming energies E = 6.5 eV and E = 6.8 eV,
respectively. A covariance matrix Vs(E, E0) of 238U total
elastic neutron scattering cross section at T = 0 K that was
used to compute the covariance in Eq. (5) is plotted in Fig-
ure 4. The peak in the covariance matrix corresponds to the
6.67 eV resonance.

For an incoming energy E = 6.5 eV that is just below
the resonance energy, the thermal motion of 238U causes
the average outgoing neutron energy to be greater than
the incoming energy (“up-scattering”), hE0i = 6.60 eV is
greater than E = 6.5 eV, as can be seen in Figure 5. For an
incoming energy E = 6.8 eV, which is just above the res-
onance energy, the e↵ect is in reverse (“down-scattering”),
hE0i = 6.67 eV is less than E = 6.8 eV, as can be seen in
Figure 7.

2 Energies E and E0 in V(E, E0) are generic variable names.

!"#$%&'

!"#$%!'

!"#(%%'

!"#(%!'

!"#(%&'

!"#(%)'

*"%' *"&' *"+' *"*' *",' -"%' -"&' -"+'

!
!"
#$%

&#

'"(%#$!)&#

*+,-#.!/0123#'"(456#76(8!193:#;1244#7!6523#

Fig. 1.

238U total elastic neutron scattering cross section �tab
s (E)

at 0 K based on ENDF/B-VII Release 0 was used in Eq. (2).

!"#$

!%#$

!&#$

#$

&#$

%#$

"#$

'#$

(#$

)#$

)*&$ )*%$ )*"$ )*'$ )*($ )*)$ )*+$ )*,$ )*-$ +$

!
!"
#$
%%&

$'
())
*+
,-
./
)

$')*-./)

0-12)345-"6!)47)$892):;962))
$<=2>)-.)?<@AAA)B)C%DEF)

#./$
&0.$
%12$
"32$
'./$
(./$
)./$
+./$
,./$
-./$
&#./$
&&./$
&%./$
&"./$
&'./$

Fig. 2. Legendre moments �T
n (E ! E0), n = 0, 1, . . . , 14 of 238U

elastic neutron scattering cross section at incoming energy E =
6.5 eV and temperature T = 103 K were computed via Eq. (2) and
used in Eq. (1) to produce a double-di↵erential elastic scattering
cross section in Figure 5. Legendre moments of a corresponding
scattering kernel are PT

sn(E ! E0) = �T
sn(E ! E0)/�T

s (E), where
�T

s (E) =
R 1

0 �
T
s0(E ! E0) dE0 = 14.3 b.

!"##$

#$

"##$

%##$

&##$

'##$

()&$ ()'$ ()*$ ()($ ()+$ (),$ ()-$ +$

!
!"
#$
%%&

$'
()*
+,
-.

/)

$')*-./)

0-1-"23-)456-"7!)58)$9:!;<)=<:>-3?"1))
$@ABC)-.)D@EFFF)G)H%IJC)

#./$
"0.$
%12$
&32$
'./$
*./$
(./$
+./$
,./$
-./$
"#./$
""./$
"%./$
"&./$
"'./$

Fig. 3. As in Figure 2 but for incoming neutron energy E =
6.8 eV; since E is above the 6.67 eV resonance energy, down-
scattering probability is dominating. �T
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Double-Differential Cross Section 
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